127 lines
3.6 KiB
Python
Executable file
127 lines
3.6 KiB
Python
Executable file
#!/usr/bin/env python
|
|
|
|
import subprocess
|
|
from pyquery import PyQuery # install using `pip install pyquery`
|
|
import json
|
|
|
|
# weather icons
|
|
weather_icons = {
|
|
"sunnyDay": "滛",
|
|
"clearNight": "望",
|
|
"cloudyFoggyDay": "",
|
|
"cloudyFoggyNight": "",
|
|
"rainyDay": "",
|
|
"rainyNight": "",
|
|
"snowyIcyDay": "",
|
|
"snowyIcyNight": "",
|
|
"severe": "",
|
|
"default": "",
|
|
}
|
|
|
|
# get location_id
|
|
# to get your own location_id, go to https://weather.com & search your location.
|
|
# once you choose your location, you can see the location_id in the URL(64 chars long hex string)
|
|
# like this: https://weather.com/en-IN/weather/today/l/c3e96d6cc4965fc54f88296b54449571c4107c73b9638c16aafc83575b4ddf2e
|
|
location_id = "a319796a4173829988d68c4e3a5f90c1b6832667ea7aaa201757a1c887ec667a"
|
|
# TODO
|
|
# location_id = "8139363e05edb302e2d8be35101e400084eadcecdfce5507e77d832ac0fa57ae"
|
|
|
|
# priv_env_cmd = 'cat $PRIV_ENV_FILE | grep weather_location | cut -d "=" -f 2'
|
|
# location_id = subprocess.run(
|
|
# priv_env_cmd, shell=True, capture_output=True).stdout.decode('utf8').strip()
|
|
|
|
# get html page
|
|
url = "https://weather.com/en-IN/weather/today/l/" + location_id
|
|
html_data = PyQuery(url)
|
|
|
|
# current temperature
|
|
temp = html_data("span[data-testid='TemperatureValue']").eq(0).text()
|
|
# print(temp)
|
|
|
|
# current status phrase
|
|
status = html_data("div[data-testid='wxPhrase']").text()
|
|
status = f"{status[:16]}.." if len(status) > 17 else status
|
|
# print(status)
|
|
|
|
# status code
|
|
status_code = html_data("#regionHeader").attr("class").split(" ")[2].split("-")[2]
|
|
# print(status_code)
|
|
|
|
# status icon
|
|
icon = (
|
|
weather_icons[status_code]
|
|
if status_code in weather_icons
|
|
else weather_icons["default"]
|
|
)
|
|
# print(icon)
|
|
|
|
# temperature feels like
|
|
temp_feel = html_data(
|
|
"div[data-testid='FeelsLikeSection'] > span[data-testid='TemperatureValue']"
|
|
).text()
|
|
temp_feel_text = f"Feels like {temp_feel}c"
|
|
# print(temp_feel_text)
|
|
|
|
# min-max temperature
|
|
temp_min = (
|
|
html_data("div[data-testid='wxData'] > span[data-testid='TemperatureValue']")
|
|
.eq(0)
|
|
.text()
|
|
)
|
|
temp_max = (
|
|
html_data("div[data-testid='wxData'] > span[data-testid='TemperatureValue']")
|
|
.eq(1)
|
|
.text()
|
|
)
|
|
temp_min_max = f" {temp_min}\t\t {temp_max}"
|
|
# print(temp_min_max)
|
|
|
|
# wind speed
|
|
wind_speed = html_data("span[data-testid='Wind']").text().split("\n")[1]
|
|
wind_text = f"煮 {wind_speed}"
|
|
# print(wind_text)
|
|
|
|
# humidity
|
|
humidity = html_data("span[data-testid='PercentageValue']").text()
|
|
humidity_text = f" {humidity}"
|
|
# print(humidity_text)
|
|
|
|
# visibility
|
|
visbility = html_data("span[data-testid='VisibilityValue']").text()
|
|
visbility_text = f" {visbility}"
|
|
# print(visbility_text)
|
|
|
|
# air quality index
|
|
air_quality_index = html_data("text[data-testid='DonutChartValue']").text()
|
|
# print(air_quality_index)
|
|
|
|
# hourly rain prediction
|
|
prediction = html_data("section[aria-label='Hourly Forecast']")(
|
|
"div[data-testid='SegmentPrecipPercentage'] > span"
|
|
).text()
|
|
prediction = prediction.replace("Chance of Rain", "")
|
|
prediction = f"\n\n (hourly) {prediction}" if len(prediction) > 0 else prediction
|
|
# print(prediction)
|
|
|
|
# tooltip text
|
|
tooltip_text = str.format(
|
|
"\t\t{}\t\t\n{}\n{}\n{}\n\n{}\n{}\n{}{}",
|
|
f'<span size="xx-large">{temp}</span>',
|
|
f"<big>{icon}</big>",
|
|
f"<big>{status}</big>",
|
|
f"<small>{temp_feel_text}</small>",
|
|
f"<big>{temp_min_max}</big>",
|
|
f"{wind_text}\t{humidity_text}",
|
|
f"{visbility_text}\tAQI {air_quality_index}",
|
|
f"<i>{prediction}</i>",
|
|
)
|
|
|
|
# print waybar module data
|
|
out_data = {
|
|
"text": f"{icon} {temp}",
|
|
"alt": status,
|
|
"tooltip": tooltip_text,
|
|
"class": status_code,
|
|
}
|
|
print(json.dumps(out_data))
|