Shadows, Reflections, Camera, Grid, AutoSoft, ...

This commit is contained in:
Marko Savić 2022-12-20 15:32:12 +01:00
parent c3d9698ede
commit 98320a6901
17 changed files with 459 additions and 34 deletions

View file

@ -9,6 +9,7 @@
- Ako koristite IntelliJ, ovo je lako namestiti: File > Project Structure... > Project > SDK > Add SDK > Download JDK... > Vendor: BellSoft Liberica JDK 19.0.1. - Ako koristite IntelliJ, ovo je lako namestiti: File > Project Structure... > Project > SDK > Add SDK > Download JDK... > Vendor: BellSoft Liberica JDK 19.0.1.
- Alternativno, sami preuzmite JDK sa [https://bell-sw.com/pages/downloads/](https://bell-sw.com/pages/downloads/#/java-19-current). Izaberite vaš OS, poslednju verziju, i Full JDK (jedino Full JDK uključuje JavaFX). Kada instalirate/raspakujete JDK, namestite u IDE-u da projekat koristi baš taj JDK. - Alternativno, sami preuzmite JDK sa [https://bell-sw.com/pages/downloads/](https://bell-sw.com/pages/downloads/#/java-19-current). Izaberite vaš OS, poslednju verziju, i Full JDK (jedino Full JDK uključuje JavaFX). Kada instalirate/raspakujete JDK, namestite u IDE-u da projekat koristi baš taj JDK.
- Ako nećete da koristite BellSoft Liberica JDK, snađite se da preuzmete odgovarajuće biblioteke na neki način (direktni download svih potrebnih jar-fajlova, Maven, ...). Potrebni su vam javafx-base, javafx-controls, javafx-graphics, i javafx-swing. - Ako nećete da koristite BellSoft Liberica JDK, snađite se da preuzmete odgovarajuće biblioteke na neki način (direktni download svih potrebnih jar-fajlova, Maven, ...). Potrebni su vam javafx-base, javafx-controls, javafx-graphics, i javafx-swing.
- U nekim slučajevima JavaFX neće koristiti GPU za iscrtavanje interfejsa i sve će biti pomalo laggy (meni se to dešava uz Linux i integrisani GPU). U tom slučaju (a ni inače verovatno ne može da škodi), dodajte system property `prism.forceGPU = true`, npr. kroz VM argument `-Dprism.forceGPU=true`.
## Šta-gde ## Šta-gde

View file

@ -0,0 +1,8 @@
package xyz.marsavic.gfxlab.graphics3d;
import xyz.marsavic.geometry.Vector;
public interface Camera {
Ray exitingRay(Vector sensorPosition);
}

View file

@ -2,8 +2,6 @@ package xyz.marsavic.gfxlab.graphics3d;
import xyz.marsavic.gfxlab.Vec3; import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.random.sampling.Sampler;
import xyz.marsavic.utils.Numeric;
public class GeometryUtils { public class GeometryUtils {
@ -26,4 +24,12 @@ public class GeometryUtils {
} }
*/ */
public static Vec3 reflected(Vec3 n, Vec3 d) {
return n.mul(2 * d.dot(n) / n.lengthSquared()).sub(d);
}
public static Vec3 reflectedN(Vec3 n_, Vec3 d) {
return n_.mul(2 * d.dot(n_)).sub(d);
}
} }

View file

@ -3,14 +3,28 @@ package xyz.marsavic.gfxlab.graphics3d;
import xyz.marsavic.gfxlab.Color; import xyz.marsavic.gfxlab.Color;
public record Material( public record Material(
Color diffuse Color diffuse,
) { Color specular,
public Material diffuse(Color diffuse) { return new Material(diffuse); } double shininess,
Color reflective,
Color refractive,
double refractiveIndex
public static final Material BLACK = new Material(Color.BLACK); ) {
public Material diffuse (Color diffuse ) { return new Material(diffuse, specular, shininess, reflective, refractive, refractiveIndex); }
public Material specular (Color specular ) { return new Material(diffuse, specular, shininess, reflective, refractive, refractiveIndex); }
public Material shininess (double shininess ) { return new Material(diffuse, specular, shininess, reflective, refractive, refractiveIndex); }
public Material reflective (Color reflective ) { return new Material(diffuse, specular, shininess, reflective, refractive, refractiveIndex); }
public Material refractive (Color refractive ) { return new Material(diffuse, specular, shininess, reflective, refractive, refractiveIndex); }
public Material refractiveIndex(double refractiveIndex) { return new Material(diffuse, specular, shininess, reflective, refractive, refractiveIndex); }
public static final Material BLACK = new Material(Color.BLACK, Color.BLACK, 32, Color.BLACK, Color.BLACK, 1.5);
public static Material matte (Color c) { return BLACK.diffuse(c); } public static Material matte (Color c) { return BLACK.diffuse(c); }
public static Material matte (double k) { return matte(Color.gray(k)); } public static Material matte (double k) { return matte(Color.gray(k)); }
public static Material matte ( ) { return matte(Color.WHITE); } public static Material matte ( ) { return matte(Color.WHITE); }
public static final Material MATTE = matte(); public static final Material MATTE = matte();
public static final Material MIRROR = BLACK.reflective(Color.WHITE);
public static final Material GLASS = BLACK.refractive(Color.WHITE).refractiveIndex(1.5);
} }

View file

@ -1,8 +1,5 @@
package xyz.marsavic.gfxlab.graphics3d; package xyz.marsavic.gfxlab.graphics3d;
import java.util.ArrayList;
import java.util.List;
public interface Solid { public interface Solid {
@ -19,4 +16,12 @@ public interface Solid {
return firstHit(ray, 0); return firstHit(ray, 0);
} }
default boolean hitBetween(Ray ray, double afterTime, double beforeTime) {
Hit hit = firstHit(ray);
if (hit == null) return false;
double t = hit.t();
return (afterTime < t) && (t < beforeTime);
}
} }

View file

@ -0,0 +1,23 @@
package xyz.marsavic.gfxlab.graphics3d.cameras;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Camera;
import xyz.marsavic.gfxlab.graphics3d.Ray;
import xyz.marsavic.utils.Numeric;
public record Perspective(
double k
) implements Camera {
public static Perspective fov(double angle) {
return new Perspective(Numeric.tanT(angle / 2));
}
@Override
public Ray exitingRay(Vector p) {
return Ray.pd(Vec3.ZERO, Vec3.zp(1/k, p));
}
}

View file

@ -0,0 +1,20 @@
package xyz.marsavic.gfxlab.graphics3d.cameras;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Transformation;
import xyz.marsavic.gfxlab.graphics3d.Camera;
import xyz.marsavic.gfxlab.graphics3d.Ray;
public record TransformedCamera (
Camera source,
Transformation transformation
) implements Camera {
@Override
public Ray exitingRay(Vector sensorPosition) {
Ray ray = source.exitingRay(sensorPosition);
return transformation.at(ray);
}
}

View file

@ -3,7 +3,7 @@ package xyz.marsavic.gfxlab.graphics3d.raytracers;
import xyz.marsavic.geometry.Vector; import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color; import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.ColorFunctionT; import xyz.marsavic.gfxlab.ColorFunctionT;
import xyz.marsavic.gfxlab.Vec3; import xyz.marsavic.gfxlab.graphics3d.Camera;
import xyz.marsavic.gfxlab.graphics3d.Ray; import xyz.marsavic.gfxlab.graphics3d.Ray;
import xyz.marsavic.gfxlab.graphics3d.Scene; import xyz.marsavic.gfxlab.graphics3d.Scene;
@ -11,10 +11,12 @@ import xyz.marsavic.gfxlab.graphics3d.Scene;
public abstract class RayTracer implements ColorFunctionT { public abstract class RayTracer implements ColorFunctionT {
protected final Scene scene; protected final Scene scene;
protected final Camera camera;
public RayTracer(Scene scene) { public RayTracer(Scene scene, Camera camera) {
this.scene = scene; this.scene = scene;
this.camera = camera;
} }
@ -22,7 +24,7 @@ public abstract class RayTracer implements ColorFunctionT {
@Override @Override
public Color at(double t, Vector p) { public Color at(double t, Vector p) {
Ray ray = Ray.pd(Vec3.xyz(0, 0, -2.6), Vec3.zp(1.6, p)); Ray ray = camera.exitingRay(p);
return sample(ray); return sample(ray);
} }

View file

@ -7,38 +7,75 @@ import xyz.marsavic.gfxlab.graphics3d.*;
public class RayTracerSimple extends RayTracer { public class RayTracerSimple extends RayTracer {
public RayTracerSimple(Scene scene) { private static final double EPSILON = 1e-9;
super(scene);
public RayTracerSimple(Scene scene, Camera camera) {
super(scene, camera);
} }
@Override @Override
protected Color sample(Ray r) { protected Color sample(Ray ray) {
Hit hit = scene.solid().firstHit(r); return sample(ray, 64);
}
protected Color sample(Ray ray, int depthRemaining) {
if (depthRemaining == 0) {
return Color.BLACK;
}
Hit hit = scene.solid().firstHit(ray, EPSILON);
if (hit == null) { if (hit == null) {
return scene.colorBackground(); return scene.colorBackground();
} }
Vec3 p = r.at(hit.t()); // The hit point Vec3 p = ray.at(hit.t()); // The hit point
Vec3 n_ = hit.n_(); // Normalized normal to the body surface at the hit point Vec3 n_ = hit.n_(); // Normalized normal to the body surface at the hit point
Vec3 i = ray.d().inverse(); // Incoming direction
double lI = i.length();
Vec3 r = GeometryUtils.reflectedN(n_, i); // Reflected ray (i reflected over n)
Vec3 r_ = r.div(lI); // Reflected ray (i reflected over n)
Color lightDiffuse = Color.BLACK; // The sum of diffuse contributions from all the lights Color lightDiffuse = Color.BLACK; // The sum of diffuse contributions from all the lights
Color lightSpecular = Color.BLACK; // The sum of specular contributions from all the lights
Material material = hit.material();
for (Light light : scene.lights()) { for (Light light : scene.lights()) {
Vec3 l = light.p().sub(p); // Vector from p to the light; Vec3 l = light.p().sub(p); // Vector from p to the light;
double lLSqr = l.lengthSquared(); // Distance from p to the light squared
double lL = Math.sqrt(lLSqr); // Distance from p to the light
double cosLN = n_.dot(l) / lL; // Cosine of the angle between l and n_
if (cosLN > 0) { // If the light is above the surface Ray rayToLight = Ray.pd(p, l);
if (scene.solid().hitBetween(rayToLight, EPSILON, 1)) continue;
double lLSqr = l.lengthSquared(); // Distance from p to the light squared
double lL = Math.sqrt(lLSqr); // Distance from p to the light
double cosLN = n_.dot(l) / lL; // Cosine of the angle between l and n_
if (cosLN > 0) { // If the light is above the surface
Color irradiance = light.c().mul(cosLN / lLSqr); Color irradiance = light.c().mul(cosLN / lLSqr);
// The irradiance represents how much light is received by a unit area of the surface. It is // The irradiance represents how much light is received by a unit area of the surface. It is
// proportional to the cosine of the incoming angle and inversely proportional to the distance squared // proportional to the cosine of the incoming angle and inversely proportional to the distance squared
// (inverse-square law). // (inverse-square law).
lightDiffuse = lightDiffuse.add(irradiance); lightDiffuse = lightDiffuse.add(irradiance);
double cosLR = l.dot(r_);
if (cosLR > 0) { // If the angle between l and r is acute
cosLR /= lL;
lightSpecular = lightSpecular.add(irradiance.mul(Math.pow(cosLR, material.shininess())));
}
} }
} }
return hit.material().diffuse().mul(lightDiffuse); Color result = Color.BLACK;
result = result.add(material.diffuse ().mul(lightDiffuse ));
result = result.add(material.specular().mul(lightSpecular));
if (material.reflective().notZero()) {
// When material has reflective properties we recursively find the color visible along the ray (p, r).
Color lightReflected = sample(Ray.pd(p, r), depthRemaining - 1);
result = result.add(material.reflective().mul(lightReflected));
}
return result;
} }
} }

View file

@ -0,0 +1,58 @@
package xyz.marsavic.gfxlab.graphics3d.scene;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Light;
import xyz.marsavic.gfxlab.graphics3d.Material;
import xyz.marsavic.gfxlab.graphics3d.Scene;
import xyz.marsavic.gfxlab.graphics3d.Solid;
import xyz.marsavic.gfxlab.graphics3d.solids.Ball;
import xyz.marsavic.gfxlab.graphics3d.solids.Group;
import xyz.marsavic.gfxlab.graphics3d.solids.HalfSpace;
import xyz.marsavic.gfxlab.graphics3d.textures.Grid;
import xyz.marsavic.random.RNG;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
public class DiscoRoom extends Scene.Base {
public DiscoRoom(int nBalls, int nLights, long seed) {
RNG rngBalls = new RNG(2*seed);
var materialUVWalls = Grid.standard(Color.WHITE);
Collection<Solid> solids = new ArrayList<>();
Collections.addAll(solids,
HalfSpace.pn(Vec3.xyz(-1, 0, 0), Vec3.xyz( 1, 0, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 1, 0, 0), Vec3.xyz(-1, 0, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, -1, 0), Vec3.xyz( 0, 1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 1, 0), Vec3.xyz( 0, -1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 0, 1), Vec3.xyz( 0, 0, -1), materialUVWalls)
);
for (int i = 0; i < nBalls; i++) {
double hue = rngBalls.nextDouble();
Material material = rngBalls.nextDouble() < 0.8 ?
Material.matte(Color.hsb(hue, 0.9, 0.9)).specular(Color.WHITE).shininess(16) :
Material.MIRROR;
solids.add(Ball.cr(Vec3.random(rngBalls).ZOtoMP(), 0.2, uv -> material));
}
solid = Group.of(solids);
RNG rngLights = new RNG(2*seed + 1);
for (int i = 0; i < nLights; i++) {
lights.add(Light.pc(
Vec3.random(rngLights).ZOtoMP(),
Color.hsb(rngLights.nextDouble(), 0.75, 1))
);
}
}
}

View file

@ -0,0 +1,52 @@
package xyz.marsavic.gfxlab.graphics3d.scene;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Light;
import xyz.marsavic.gfxlab.graphics3d.Material;
import xyz.marsavic.gfxlab.graphics3d.Scene;
import xyz.marsavic.gfxlab.graphics3d.Solid;
import xyz.marsavic.gfxlab.graphics3d.solids.Ball;
import xyz.marsavic.gfxlab.graphics3d.solids.Group;
import xyz.marsavic.gfxlab.graphics3d.solids.HalfSpace;
import xyz.marsavic.gfxlab.graphics3d.textures.Grid;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
public class Mirrors extends Scene.Base {
public Mirrors(int nBalls) {
var materialUVWalls = Grid.standard(Color.WHITE);
var materialUVWallsL = Grid.standard(Color.hsb(0.00, 0.5, 1.0));
var materialUVWallsR = Grid.standard(Color.hsb(0.33, 0.5, 1.0));
Collection<Solid> solids = new ArrayList<>();
Collections.addAll(solids,
HalfSpace.pn(Vec3.xyz(-1, 0, 0), Vec3.xyz( 1, 0, 0), materialUVWallsL),
HalfSpace.pn(Vec3.xyz( 1, 0, 0), Vec3.xyz(-1, 0, 0), materialUVWallsR),
HalfSpace.pn(Vec3.xyz( 0, -1, 0), Vec3.xyz( 0, 1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 1, 0), Vec3.xyz( 0, -1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 0, 1), Vec3.xyz( 0, 0, -1), materialUVWalls)
);
Collections.addAll(lights,
Light.pc(Vec3.xyz(-0.8, 0.8, -0.8), Color.WHITE),
Light.pc(Vec3.xyz(-0.8, 0.8, 0.8), Color.WHITE),
Light.pc(Vec3.xyz( 0.8, 0.8, -0.8), Color.WHITE),
Light.pc(Vec3.xyz( 0.8, 0.8, 0.8), Color.WHITE)
);
for (int i = 0; i < nBalls; i++) {
Vector c = Vector.polar(0.5, 1.0 * i / nBalls);
Ball ball = Ball.cr(Vec3.zp(0, c), 0.4, uv -> Material.MIRROR);
solids.add(ball);
}
solid = Group.of(solids);
}
}

View file

@ -0,0 +1,50 @@
package xyz.marsavic.gfxlab.graphics3d.scene;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Light;
import xyz.marsavic.gfxlab.graphics3d.Material;
import xyz.marsavic.gfxlab.graphics3d.Scene;
import xyz.marsavic.gfxlab.graphics3d.Solid;
import xyz.marsavic.gfxlab.graphics3d.solids.Ball;
import xyz.marsavic.gfxlab.graphics3d.solids.Group;
import xyz.marsavic.gfxlab.graphics3d.solids.HalfSpace;
import xyz.marsavic.gfxlab.graphics3d.textures.Grid;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
public class RefractionTest extends Scene.Base {
public RefractionTest() {
var materialUVWalls = Grid.standard(Color.WHITE);
var materialUVWallsL = Grid.standard(Color.hsb(0.00, 0.5, 1.0));
var materialUVWallsR = Grid.standard(Color.hsb(0.33, 0.5, 1.0));
Collection<Solid> solids = new ArrayList<>();
Collections.addAll(solids,
HalfSpace.pn(Vec3.xyz(-1, 0, 0), Vec3.xyz( 1, 0, 0), materialUVWallsL),
HalfSpace.pn(Vec3.xyz( 1, 0, 0), Vec3.xyz(-1, 0, 0), materialUVWallsR),
HalfSpace.pn(Vec3.xyz( 0, -1, 0), Vec3.xyz( 0, 1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 1, 0), Vec3.xyz( 0, -1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 0, 1), Vec3.xyz( 0, 0, -1), materialUVWalls),
Ball.cr(Vec3.xyz(-0.3, 0.3, 0.0), 0.4, uv -> Material.GLASS.refractive(Color.hsb(0.7, 0.2, 1.0))),
Ball.cr(Vec3.xyz( 0.4, -0.4, 0.0), 0.4, uv -> Material.GLASS),
Ball.cr(Vec3.xyz(-0.3, -0.4, -0.6), 0.4, uv -> Material.GLASS.refractiveIndex(2.5)),
Ball.cr(Vec3.xyz( 0.4, 0.3, 0.6), 0.4, uv -> Material.GLASS.refractiveIndex(0.6))
);
Collections.addAll(lights,
Light.pc(Vec3.xyz(-0.7, 0.7, -0.7), Color.WHITE),
Light.pc(Vec3.xyz(-0.7, 0.7, 0.7), Color.WHITE),
Light.pc(Vec3.xyz( 0.7, 0.7, -0.7), Color.WHITE),
Light.pc(Vec3.xyz( 0.7, 0.7, 0.7), Color.WHITE)
);
solid = Group.of(solids);
}
}

View file

@ -17,10 +17,10 @@ public class SceneTest1 extends Scene.Base{
public SceneTest1() { public SceneTest1() {
solid = Group.of( solid = Group.of(
Ball.cr(Vec3.xyz(0, 0, 0), 1, Ball.cr(Vec3.xyz(0, 0, 0), 1,
uv -> new Material(Color.hsb(uv.x() * 6, 0.8, uv.y())) uv -> Material.matte(Color.hsb(uv.x() * 6, 0.8, uv.y()))
), ),
HalfSpace.pn(Vec3.xyz(0, -1, 0), Vec3.xyz(0, 1, 0), HalfSpace.pn(Vec3.xyz(0, -1, 0), Vec3.xyz(0, 1, 0),
uv -> new Material(Color.hsb(uv.x(), 0.8, 0.8)) uv -> Material.matte(Color.hsb(uv.x(), 0.8, 0.8))
) )
); );

View file

@ -39,4 +39,15 @@ public class Group implements Solid {
return minHit; return minHit;
} }
@Override
public boolean hitBetween(Ray ray, double afterTime, double beforeTime) {
for (Solid s : solids) {
Hit hit = s.firstHit(ray, afterTime);
if ((hit != null) && (hit.t() < beforeTime)) {
return true;
}
}
return false;
}
} }

View file

@ -0,0 +1,54 @@
package xyz.marsavic.gfxlab.graphics3d.textures;
import xyz.marsavic.functions.interfaces.F1;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.graphics3d.Material;
public class Grid implements F1<Material, Vector> {
private final Vector size, sizeLine;
private final Material material, materialLine;
// transient
private final Vector sizeLineHalf;
public Grid(Vector size, Vector sizeLine, Material material, Material materialLine) {
this.size = size;
this.sizeLine = sizeLine;
this.material = material;
this.materialLine = materialLine;
sizeLineHalf = sizeLine.div(2);
}
@Override
public Material at(Vector uv) {
Vector p = uv.add(sizeLineHalf).mod(size);
return (p.x() < sizeLine.x()) || (p.y() < sizeLine.y()) ? materialLine : material;
}
public static Grid standard(Color color) {
return new Grid(
Vector.xy(0.25, 0.25),
Vector.xy(0.01, 0.01),
Material.matte(color),
Material.matte(color.mul(0.75))
);
}
public static Grid standardUnit(Color color) {
return new Grid(
Vector.UNIT_DIAGONAL,
Vector.xy(1.0/64),
Material.matte(color),
Material.matte(color.mul(0.75))
);
}
}

View file

@ -4,12 +4,15 @@ import xyz.marsavic.functions.interfaces.A2;
import xyz.marsavic.functions.interfaces.F1; import xyz.marsavic.functions.interfaces.F1;
import xyz.marsavic.gfxlab.*; import xyz.marsavic.gfxlab.*;
import xyz.marsavic.gfxlab.elements.Output; import xyz.marsavic.gfxlab.elements.Output;
import xyz.marsavic.gfxlab.graphics3d.Affine;
import xyz.marsavic.gfxlab.graphics3d.cameras.Perspective;
import xyz.marsavic.gfxlab.graphics3d.cameras.TransformedCamera;
import xyz.marsavic.gfxlab.graphics3d.raytracers.RayTracerSimple; import xyz.marsavic.gfxlab.graphics3d.raytracers.RayTracerSimple;
import xyz.marsavic.gfxlab.graphics3d.scene.SceneTest1; import xyz.marsavic.gfxlab.graphics3d.scene.DiscoRoom;
import xyz.marsavic.gfxlab.gui.UtilsGL; import xyz.marsavic.gfxlab.gui.UtilsGL;
import xyz.marsavic.gfxlab.tonemapping.ColorTransform; import xyz.marsavic.gfxlab.tonemapping.ColorTransform;
import xyz.marsavic.gfxlab.tonemapping.ToneMapping; import xyz.marsavic.gfxlab.tonemapping.ToneMapping;
import xyz.marsavic.gfxlab.tonemapping.colortransforms.Multiply; import xyz.marsavic.gfxlab.tonemapping.matrixcolor_to_colortransforms.AutoSoft;
import static xyz.marsavic.gfxlab.elements.ElementF.e; import static xyz.marsavic.gfxlab.elements.ElementF.e;
import static xyz.marsavic.gfxlab.elements.Output.val; import static xyz.marsavic.gfxlab.elements.Output.val;
@ -30,22 +33,31 @@ public class GfxLab {
e(Fs::transformedColorFunction, e(Fs::transformedColorFunction,
// e(Blobs::new, val(5), val(0.1), val(0.2)), // e(Blobs::new, val(5), val(0.1), val(0.2)),
e(RayTracerSimple::new, e(RayTracerSimple::new,
e(SceneTest1::new) // e(RefractionTest::new),
e(DiscoRoom::new, val(16), val(16), val(0x3361EB272FEA4C62L)),
// e(Mirrors::new, val(3)),
e(TransformedCamera::new,
e(Perspective::new, val(1.0/3)),
e(Affine.IDENTITY
.then(Affine.translation(Vec3.xyz(0, 0, -4)))
// .then(Affine.rotationAboutY(0.03))
)
)
), ),
e(TransformationsFromSize.toGeometric, eSize) e(TransformationsFromSize.toGeometric, eSize)
) )
), ),
e(Fs::toneMapping, e(Fs::toneMapping,
e(ColorTransform::asColorTransformFromMatrixColor, // e(ColorTransform::asColorTransformFromMatrixColor,
e(Multiply::new, val(1.0)) // e(Multiply::new, val(0.05))
) // )
e(AutoSoft::new, e(0x1p-5), e(1.0))
) )
) )
); );
outRenderer = eRenderer.out(); outRenderer = eRenderer.out();
} }
} }
@ -77,4 +89,5 @@ class Fs {
}; };
} }
} }

View file

@ -0,0 +1,71 @@
package xyz.marsavic.gfxlab.tonemapping.matrixcolor_to_colortransforms;
import xyz.marsavic.functions.interfaces.F1;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Matrix;
import xyz.marsavic.gfxlab.gui.UtilsGL;
import xyz.marsavic.gfxlab.tonemapping.ColorTransform;
// TODO
public class AutoSoft implements F1<ColorTransform, Matrix<Color>> {
private final double preFactor;
private final double power;
private final double postFactor = 1.0;
private final boolean autoPostFactor = true;
public AutoSoft(double preFactor, double power) {
this.preFactor = preFactor;
this.power = power;
}
private double lFactor(double lSrc) {
double lPre = lSrc * preFactor;
double lDst = 1 - 1 / (1 + Math.pow(lPre, power));
double f = lDst / lSrc;
if (Double.isNaN(f)) {
f = 0;
}
return f;
}
@Override
public ColorTransform at(Matrix<Color> colorMatrix) {
Vector size = colorMatrix.size();
double postFactor_;
if (autoPostFactor) {
double[] maxY = new double[size.xInt()];
UtilsGL.parallelY(size, y -> {
maxY[y] = Double.NEGATIVE_INFINITY;
for (int x = 0; x < size.xInt(); x++) {
Color c = colorMatrix.get(x, y);
Color result = c.mul(lFactor(c.luminance()));
maxY[y] = Math.max(maxY[y], result.max());
}
});
// TODO Replace with fork-join task.
double max = Double.NEGATIVE_INFINITY;
for (int y = 0; y < size.yInt(); y++) {
max = Math.max(max, maxY[y]);
}
postFactor_ = 1 / max;
} else {
postFactor_ = postFactor;
}
return color -> color.mul(lFactor(color.luminance()) * postFactor_);
}
}