Compare commits

..

1 commit

Author SHA1 Message Date
Petar Kapriš b11e096014 Add BoringGrid and Planes as drawing demonstrations. 2022-11-22 22:43:11 +01:00
30 changed files with 177 additions and 2349 deletions

View file

@ -2,13 +2,13 @@
<library name="google.guava" type="repository">
<properties maven-id="com.google.guava:guava:RELEASE" />
<CLASSES>
<root url="jar://$PROJECT_DIR$/lib/guava-32.1.2-jre.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/guava-31.1-jre.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/failureaccess-1.0.1.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/jsr305-3.0.2.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/checker-qual-3.33.0.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/error_prone_annotations-2.18.0.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/j2objc-annotations-2.8.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/checker-qual-3.12.0.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/error_prone_annotations-2.11.0.jar!/" />
<root url="jar://$PROJECT_DIR$/lib/j2objc-annotations-1.3.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES />

View file

@ -1,6 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" languageLevel="JDK_20" default="true" project-jdk-name="liberica-20" project-jdk-type="JavaSDK">
<component name="ProjectRootManager" version="2" languageLevel="JDK_19" default="true" project-jdk-name="liberica-19" project-jdk-type="JavaSDK">
<output url="file://$PROJECT_DIR$/out" />
</component>
</project>

View file

@ -9,7 +9,6 @@
- Ako koristite IntelliJ, ovo je lako namestiti: File > Project Structure... > Project > SDK > Add SDK > Download JDK... > Vendor: BellSoft Liberica JDK 19.0.1.
- Alternativno, sami preuzmite JDK sa [https://bell-sw.com/pages/downloads/](https://bell-sw.com/pages/downloads/#/java-19-current). Izaberite vaš OS, poslednju verziju, i Full JDK (jedino Full JDK uključuje JavaFX). Kada instalirate/raspakujete JDK, namestite u IDE-u da projekat koristi baš taj JDK.
- Ako nećete da koristite BellSoft Liberica JDK, snađite se da preuzmete odgovarajuće biblioteke na neki način (direktni download svih potrebnih jar-fajlova, Maven, ...). Potrebni su vam javafx-base, javafx-controls, javafx-graphics, i javafx-swing.
- U nekim slučajevima JavaFX neće koristiti GPU za iscrtavanje interfejsa i sve će biti pomalo laggy (meni se to dešava uz Linux i integrisani GPU). U tom slučaju (a ni inače verovatno ne može da škodi), dodajte system property `prism.forceGPU = true`, npr. kroz VM argument `-Dprism.forceGPU=true`.
## Šta-gde

View file

@ -104,23 +104,6 @@ public class Color {
return oklabPolar(v.x(), v.y(), v.z());
}
static double clipDoubleXyz(double x) {
if (x < 0.0)
return 0.0;
return x;
}
public static Color xyz(double x, double y, double z) {
double r = 3.2404542 * x - 1.5371385 * y - 0.4985314 * z;
double g = -0.9692660 * x + 1.8760108 * y + 0.0415560 * z;
double b = 0.0556434 * x - 0.2040259 * y + 1.0572252 * z;
r = clipDoubleXyz(r);
g = clipDoubleXyz(g);
b = clipDoubleXyz(b);
return Color.rgb(r,g,b);
}
public static Color code(int code) {
return rgb(

View file

@ -1,14 +0,0 @@
package xyz.marsavic.gfxlab;
import javafx.util.Pair;
import java.util.Arrays;
import java.util.Comparator;
@FunctionalInterface
public interface Spectrum {
public double at(double wavelength);
public final Spectrum WHITE = w -> 1.0;
public final Spectrum BLACK = w -> 0.0;
}

View file

@ -1,85 +0,0 @@
package xyz.marsavic.gfxlab;
import javafx.util.Pair;
import java.util.Arrays;
import java.util.Comparator;
public class SplineSpectrum implements Spectrum {
Pair<Double, Double>[] samples;
double[] m;
public SplineSpectrum(Pair<Double, Double>[] samples) {
if (samples == null) {
throw new NullPointerException();
}
this.samples = samples;
int n = samples.length;
double[] d = new double[n - 1];
m = new double[n];
for (int i = 1; i < samples.length; i++) {
double h = samples[i].getKey() - samples[i - 1].getKey();
if (h <= 0.0)
throw new IllegalArgumentException("Samples must have strictly increasing x coordinates.");
d[i - 1] = (samples[i].getValue() - samples[i - 1].getValue());
}
m[0] = d[0];
for (int i = 1; i < n - 1; i++) {
if (d[i] == 0.0) {
m[i] = 0.0;
m[i + 1] = 0.0;
} else {
double a = m[i] / d[i];
double b = m[i + 1] / d[i];
double h = a*a+b*b;
if (h > 9.0) {
double t = 3.0 / h;
m[i] = t * a * d[i];
m[i + 1] = t * b * d[i];
}
}
}
}
@Override
public double at(double wavelength) {
final int n = samples.length;
if (wavelength <= samples[0].getKey()) {
return samples[0].getValue();
}
if (wavelength >= samples[n-1].getKey()) {
return samples[n-1].getValue();
}
int i = Arrays.binarySearch(samples,
new Pair<Double, Double>(Double.valueOf(wavelength), null),
new DoublePairKeyComparator());
if (i >= 0) {
return samples[i].getValue();
}
i = -(i+2); // Invert negative result and get index of previous element
double h = samples[i+1].getKey() - samples[i].getKey();
double t = (wavelength - samples[i].getKey()) / h;
return (samples[i].getValue() * (1 + 2*t) + h*m[i]*t) * (1 - t) * (1 - t)
+ (samples[i+1].getValue() * (3 - 2*t) + h * m[i+1] * (t - 1)) * t * t;
}
}
class DoublePairKeyComparator implements Comparator<Pair<Double, Double>> {
@Override
public int compare(Pair<Double, Double> o1, Pair<Double, Double> o2) {
double k1 = o1.getKey(), k2 = o2.getKey();
if (k1 > k2)
return 1;
else if (k1 < k2) {
return -1;
} else {
return 0;
}
}
}

View file

@ -1,8 +0,0 @@
package xyz.marsavic.gfxlab.graphics3d;
import xyz.marsavic.geometry.Vector;
public interface Camera {
Ray exitingRay(Vector sensorPosition);
}

View file

@ -2,6 +2,8 @@ package xyz.marsavic.gfxlab.graphics3d;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.random.sampling.Sampler;
import xyz.marsavic.utils.Numeric;
public class GeometryUtils {
@ -24,12 +26,4 @@ public class GeometryUtils {
}
*/
public static Vec3 reflected(Vec3 n, Vec3 d) {
return n.mul(2 * d.dot(n) / n.lengthSquared()).sub(d);
}
public static Vec3 reflectedN(Vec3 n_, Vec3 d) {
return n_.mul(2 * d.dot(n_)).sub(d);
}
}

View file

@ -1,20 +1,20 @@
package xyz.marsavic.gfxlab.graphics3d;
import xyz.marsavic.gfxlab.Spectrum;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
/** Point light. */
public record Light(
Vec3 p,
Spectrum s
Color c
) {
public static Light ps(Vec3 p, Spectrum s) {
return new Light(p, s);
public static Light pc(Vec3 p, Color c) {
return new Light(p, c);
}
public static Light p(Vec3 p) {
return ps(p, wavelength -> 1.0);
return pc(p, Color.WHITE);
}
}

View file

@ -1,46 +1,16 @@
package xyz.marsavic.gfxlab.graphics3d;
import javafx.util.Pair;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Spectrum;
import xyz.marsavic.gfxlab.SplineSpectrum;
public record Material(
Spectrum diffuse,
Spectrum specular,
Spectrum emissive,
double shininess,
Spectrum reflective,
Spectrum refractive,
Spectrum refractiveIndex
Color diffuse
) {
public Material diffuse (Spectrum diffuse ) { return new Material(diffuse, specular, emissive, shininess, reflective, refractive, refractiveIndex); }
public Material specular (Spectrum specular ) { return new Material(diffuse, specular, emissive, shininess, reflective, refractive, refractiveIndex); }
public Material emissive (Spectrum emissive ) { return new Material(diffuse, specular, emissive, shininess, reflective, refractive, refractiveIndex); }
public Material shininess (double shininess ) { return new Material(diffuse, specular, emissive, shininess, reflective, refractive, refractiveIndex); }
public Material reflective (Spectrum reflective ) { return new Material(diffuse, specular, emissive, shininess, reflective, refractive, refractiveIndex); }
public Material refractive (Spectrum refractive ) { return new Material(diffuse, specular, emissive, shininess, reflective, refractive, refractiveIndex); }
public Material refractiveIndex(Spectrum refractiveIndex) { return new Material(diffuse, specular, emissive, shininess, reflective, refractive, refractiveIndex); }
// Since refractive index is a function from wavelength to a real number, it can be viewed as a spectrum
public Material diffuse(Color diffuse) { return new Material(diffuse); }
public static final Material BLACK = new Material(w -> 0, w -> 0, w -> 0, 32, w -> 0, w -> 0, w -> 1.5);
public static final Material BLACK = new Material(Color.BLACK);
public static Material matte (Spectrum s) { return BLACK.diffuse(s); }
public static Material matte (double k) { return matte(w -> k); }
public static Material matte ( ) { return matte(w -> 1.0); } // TODO: potentially have to replace with D65
public static Material matte (Color c) { return BLACK.diffuse(c); }
public static Material matte (double k) { return matte(Color.gray(k)); }
public static Material matte ( ) { return matte(Color.WHITE); }
public static final Material MATTE = matte();
public static final Material MIRROR = BLACK.reflective(new SplineSpectrum(new Pair[]{
new Pair<Double, Double>(248.0, 0.926),
new Pair<Double, Double>(400.0, 0.920),
new Pair<Double, Double>(532.0, 0.916),
new Pair<Double, Double>(633.0, 0.907),
new Pair<Double, Double>(800.0, 0.868)
}));
public static final Material GLASS = BLACK.refractive(w -> 1.0)
.refractiveIndex(w -> 1.6 + (w-400)/(800-400) * (1.55 - 1.6)); /* Made to roughly resemble refractive index
of BaK4 crown glass*/
public static Material light (Spectrum s) { return BLACK.emissive(s); }
}

View file

@ -1,7 +1,6 @@
package xyz.marsavic.gfxlab.graphics3d;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Spectrum;
import java.util.ArrayList;
import java.util.Collection;
@ -13,13 +12,16 @@ public interface Scene {
Collection<Light> lights();
Spectrum backgroundSpectrum = wavelength -> 0;
default Color colorBackground() {
return Color.BLACK;
}
class Base implements Scene {
protected Solid solid;
protected final List<Light> lights = new ArrayList<>();
protected final Color colorBackground = Color.BLACK;
@Override
public Solid solid() {
@ -31,7 +33,10 @@ public interface Scene {
return lights;
}
public final Spectrum backgroundSpectrum = wavelength -> 0;
@Override
public Color colorBackground() {
return colorBackground;
}
}

View file

@ -1,5 +1,8 @@
package xyz.marsavic.gfxlab.graphics3d;
import java.util.ArrayList;
import java.util.List;
public interface Solid {
@ -16,12 +19,4 @@ public interface Solid {
return firstHit(ray, 0);
}
default boolean hitBetween(Ray ray, double afterTime, double beforeTime) {
Hit hit = firstHit(ray);
if (hit == null) return false;
double t = hit.t();
return (afterTime < t) && (t < beforeTime);
}
}

View file

@ -1,14 +0,0 @@
package xyz.marsavic.gfxlab.graphics3d.cameras;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Camera;
import xyz.marsavic.gfxlab.graphics3d.Ray;
public class Orthographic implements Camera {
@Override
public Ray exitingRay(Vector p) {
return Ray.pd(Vec3.zp(0, p), Vec3.xyz(0, 0, 1));
}
}

View file

@ -1,23 +0,0 @@
package xyz.marsavic.gfxlab.graphics3d.cameras;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Camera;
import xyz.marsavic.gfxlab.graphics3d.Ray;
import xyz.marsavic.utils.Numeric;
public record Perspective(
double k
) implements Camera {
public static Perspective fov(double angle) {
return new Perspective(Numeric.tanT(angle / 2));
}
@Override
public Ray exitingRay(Vector p) {
return Ray.pd(Vec3.ZERO, Vec3.zp(1/k, p));
}
}

View file

@ -1,20 +0,0 @@
package xyz.marsavic.gfxlab.graphics3d.cameras;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Transformation;
import xyz.marsavic.gfxlab.graphics3d.Camera;
import xyz.marsavic.gfxlab.graphics3d.Ray;
public record TransformedCamera (
Camera source,
Transformation transformation
) implements Camera {
@Override
public Ray exitingRay(Vector sensorPosition) {
Ray ray = source.exitingRay(sensorPosition);
return transformation.at(ray);
}
}

View file

@ -3,7 +3,7 @@ package xyz.marsavic.gfxlab.graphics3d.raytracers;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.ColorFunctionT;
import xyz.marsavic.gfxlab.graphics3d.Camera;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Ray;
import xyz.marsavic.gfxlab.graphics3d.Scene;
@ -11,12 +11,10 @@ import xyz.marsavic.gfxlab.graphics3d.Scene;
public abstract class RayTracer implements ColorFunctionT {
protected final Scene scene;
protected final Camera camera;
public RayTracer(Scene scene, Camera camera) {
public RayTracer(Scene scene) {
this.scene = scene;
this.camera = camera;
}
@ -24,7 +22,7 @@ public abstract class RayTracer implements ColorFunctionT {
@Override
public Color at(double t, Vector p) {
Ray ray = camera.exitingRay(p);
Ray ray = Ray.pd(Vec3.xyz(0, 0, -2.6), Vec3.zp(1.6, p));
return sample(ray);
}

View file

@ -1,123 +1,44 @@
package xyz.marsavic.gfxlab.graphics3d.raytracers;
import xyz.marsavic.geometry.Vec;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.*;
import xyz.marsavic.random.RNG;
import xyz.marsavic.utils.Numeric;
public class RayTracerSimple extends RayTracer {
private static final int spectrumSamples = 20;
private static final double minWavelength = 380;
private static final double maxWavelength = 780;
private static final double EPSILON = 1e-9;
private static final int sampleNumber = 4;
private static final double stopProbability = 1.0;
public RayTracerSimple(Scene scene, Camera camera) {
super(scene, camera);
public RayTracerSimple(Scene scene) {
super(scene);
}
public static RNG rng = new RNG();
@Override
protected Color sample(Ray ray) {
Color result = Color.BLACK;
for (int i = 0; i < sampleNumber; i++) {
double x = 0.0, y = 0.0, z = 0.0;
for (int j = 0; j < spectrumSamples; j++) {
double wavelength = minWavelength + (((double) j + rng.nextDouble()) / spectrumSamples) * (maxWavelength - minWavelength);
double intensity = sample(ray, wavelength, 7);
x += intensity * Xyz.x[(int) wavelength];
y += intensity * Xyz.y[(int) wavelength];
z += intensity * Xyz.z[(int) wavelength];
}
result = result.add(Color.xyz(x, y, z));
}
return result.div(sampleNumber);
}
protected double sample(Ray ray, double wavelength, int depthRemaining) {
double returnFactor = 1.0;
if (depthRemaining <= 0) {
if (rng.nextDouble(1.0) <= stopProbability) {
return 0.0;
} else {
returnFactor = 1/(1-stopProbability);
}
}
Hit hit = scene.solid().firstHit(ray, EPSILON);
protected Color sample(Ray r) {
Hit hit = scene.solid().firstHit(r);
if (hit == null) {
return scene.backgroundSpectrum.at(wavelength);
return scene.colorBackground();
}
Vec3 p = ray.at(hit.t()); // The hit point
Vec3 n_ = hit.n_(); // Normalized normal to the body surface at the hit point
Vec3 i = ray.d().inverse(); // Incoming direction
double lI = i.length();
Vec3 r = GeometryUtils.reflectedN(n_, i); // Reflected ray (i reflected over n)
Vec3 r_ = r.div(lI); // Reflected ray (i reflected over n)
Vec3 p = r.at(hit.t()); // The hit point
Vec3 n_ = hit.n_(); // Normalized normal to the body surface at the hit point
Material material = hit.material();
Color lightDiffuse = Color.BLACK; // The sum of diffuse contributions from all the lights
double lightDiffuse = 0.0; // The diffuse contribution of the generated path
double lightSpecular = 0.0; // The specular contribution of the generated path
double lightReflected = 0.0; // The reflective contribution of the generated path
double lightRefracted = 0.0; // The refractive contribution of the generated path
double lightEmissive = material.emissive().at(wavelength); // The contribution of the light surface itself
for (Light light : scene.lights()) {
Vec3 l = light.p().sub(p); // Vector from p to the light;
double lLSqr = l.lengthSquared(); // Distance from p to the light squared
double lL = Math.sqrt(lLSqr); // Distance from p to the light
double cosLN = n_.dot(l) / lL; // Cosine of the angle between l and n_
double result = lightEmissive;
double diffuse = material.diffuse().at(wavelength);
if (diffuse != 0.0) {
double r1 = rng.nextDouble(1.0); // Angle of projected random vector in the plain normal to n_
double r2 = rng.nextDouble(0.25); // Angle of vector compared to n_
Vec3 u_ = GeometryUtils.normal(n_).normalized_(); // One of the normalized vectors normal to n
Vec3 v_ = n_.cross(u_); // Doesn't need to be normalized because n_ and u_ are normalized and normal
Vec3 o = u_.mul(Numeric.sinT(r1)).add(v_.mul(Numeric.cosT(r1)))
.mul(Numeric.cosT(r2)).add(n_.mul(Numeric.sinT(r2))); // Outgoing sample vector
lightDiffuse = diffuse * sample(Ray.pd(p, o), wavelength, depthRemaining - 1);
}
result += lightDiffuse;
double reflective = material.reflective().at(wavelength);
if (reflective != 0.0) {
lightReflected = sample(Ray.pd(p, r), wavelength, depthRemaining - 1);
result += reflective * lightReflected;
}
double refractive = material.refractive().at(wavelength);
if (refractive != 0.0) {
Vec3 b; // refracted light vector
double rInd = 1/material.refractiveIndex().at(wavelength);
double iCosN = i.dot(n_);
if (iCosN < 0) {
rInd = 1/rInd;
if (cosLN > 0) { // If the light is above the surface
Color irradiance = light.c().mul(cosLN / lLSqr);
// The irradiance represents how much light is received by a unit area of the surface. It is
// proportional to the cosine of the incoming angle and inversely proportional to the distance squared
// (inverse-square law).
lightDiffuse = lightDiffuse.add(irradiance);
}
Vec3 iProjection = n_.mul(iCosN);
Vec3 iRejection = i.sub(iProjection);
double iSinSqr = iRejection.lengthSquared()/i.lengthSquared();
double bSinSqr = iSinSqr*rInd*rInd;
if (bSinSqr > 1) {
b = r;
} else {
Vec3 bRejection = iRejection.inverse();
Vec3 bProjection = n_.mul(Math.sqrt(bRejection.lengthSquared()*(1-bSinSqr)/bSinSqr));
if (iCosN > 0) {
bProjection = bProjection.inverse();
}
b = bRejection.add(bProjection);
}
lightRefracted = sample(Ray.pd(p, b), wavelength, depthRemaining - 1);
result += refractive * lightRefracted;
}
return returnFactor * result;
return hit.material().diffuse().mul(lightDiffuse);
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,61 +0,0 @@
/*
package xyz.marsavic.gfxlab.graphics3d.scene;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Light;
import xyz.marsavic.gfxlab.graphics3d.Material;
import xyz.marsavic.gfxlab.graphics3d.Scene;
import xyz.marsavic.gfxlab.graphics3d.Solid;
import xyz.marsavic.gfxlab.graphics3d.solids.Ball;
import xyz.marsavic.gfxlab.graphics3d.solids.Group;
import xyz.marsavic.gfxlab.graphics3d.solids.HalfSpace;
import xyz.marsavic.gfxlab.graphics3d.textures.Grid;
import xyz.marsavic.random.RNG;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
public class DiscoRoom extends Scene.Base {
public DiscoRoom(int nBalls, int nLights, long seed) {
RNG rngBalls = new RNG(2*seed);
var materialUVWalls = Grid.standard(Color.WHITE);
Collection<Solid> solids = new ArrayList<>();
Collections.addAll(solids,
HalfSpace.pn(Vec3.xyz(-1, 0, 0), Vec3.xyz( 1, 0, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 1, 0, 0), Vec3.xyz(-1, 0, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, -1, 0), Vec3.xyz( 0, 1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 1, 0), Vec3.xyz( 0, -1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 0, 1), Vec3.xyz( 0, 0, -1), materialUVWalls)
);
for (int i = 0; i < nBalls; i++) {
double hue = rngBalls.nextDouble();
Material material = rngBalls.nextDouble() < 0.8 ?
Material.matte(Color.hsb(hue, 0.9, 0.9)).specular(Color.WHITE).shininess(16) :
Material.MIRROR;
solids.add(Ball.cr(Vec3.random(rngBalls).ZOtoMP(), 0.2, uv -> material));
}
solid = Group.of(solids);
RNG rngLights = new RNG(2*seed + 1);
for (int i = 0; i < nLights; i++) {
lights.add(Light.pc(
Vec3.random(rngLights).ZOtoMP(),
Color.hsb(rngLights.nextDouble(), 0.75, 1))
);
}
}
}
*/

View file

@ -1,54 +0,0 @@
/*
package xyz.marsavic.gfxlab.graphics3d.scene;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Light;
import xyz.marsavic.gfxlab.graphics3d.Material;
import xyz.marsavic.gfxlab.graphics3d.Scene;
import xyz.marsavic.gfxlab.graphics3d.Solid;
import xyz.marsavic.gfxlab.graphics3d.solids.Ball;
import xyz.marsavic.gfxlab.graphics3d.solids.Group;
import xyz.marsavic.gfxlab.graphics3d.solids.HalfSpace;
import xyz.marsavic.gfxlab.graphics3d.textures.Grid;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
public class Mirrors extends Scene.Base {
public Mirrors(int nBalls) {
var materialUVWalls = Grid.standard(Color.WHITE);
var materialUVWallsL = Grid.standard(Color.hsb(0.00, 0.5, 1.0));
var materialUVWallsR = Grid.standard(Color.hsb(0.33, 0.5, 1.0));
Collection<Solid> solids = new ArrayList<>();
Collections.addAll(solids,
HalfSpace.pn(Vec3.xyz(-1, 0, 0), Vec3.xyz( 1, 0, 0), materialUVWallsL),
HalfSpace.pn(Vec3.xyz( 1, 0, 0), Vec3.xyz(-1, 0, 0), materialUVWallsR),
HalfSpace.pn(Vec3.xyz( 0, -1, 0), Vec3.xyz( 0, 1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 1, 0), Vec3.xyz( 0, -1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 0, 1), Vec3.xyz( 0, 0, -1), materialUVWalls)
);
Collections.addAll(lights,
Light.pc(Vec3.xyz(-0.8, 0.8, -0.8), Color.WHITE),
Light.pc(Vec3.xyz(-0.8, 0.8, 0.8), Color.WHITE),
Light.pc(Vec3.xyz( 0.8, 0.8, -0.8), Color.WHITE),
Light.pc(Vec3.xyz( 0.8, 0.8, 0.8), Color.WHITE)
);
for (int i = 0; i < nBalls; i++) {
Vector c = Vector.polar(0.5, 1.0 * i / nBalls);
Ball ball = Ball.cr(Vec3.zp(0, c), 0.4, uv -> Material.MIRROR);
solids.add(ball);
}
solid = Group.of(solids);
}
}
*/

View file

@ -1,53 +0,0 @@
/*
package xyz.marsavic.gfxlab.graphics3d.scene;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Light;
import xyz.marsavic.gfxlab.graphics3d.Material;
import xyz.marsavic.gfxlab.graphics3d.Scene;
import xyz.marsavic.gfxlab.graphics3d.Solid;
import xyz.marsavic.gfxlab.graphics3d.solids.Ball;
import xyz.marsavic.gfxlab.graphics3d.solids.Group;
import xyz.marsavic.gfxlab.graphics3d.solids.HalfSpace;
import xyz.marsavic.gfxlab.graphics3d.textures.Grid;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
public class RefractionTest extends Scene.Base {
public RefractionTest() {
var materialUVWalls = Grid.standard(Color.WHITE);
var materialUVWallsL = Grid.standard(Color.hsb(0.00, 0.5, 1.0));
var materialUVWallsR = Grid.standard(Color.hsb(0.33, 0.5, 1.0));
Collection<Solid> solids = new ArrayList<>();
Collections.addAll(solids,
HalfSpace.pn(Vec3.xyz(-1, 0, 0), Vec3.xyz( 1, 0, 0), materialUVWallsL),
HalfSpace.pn(Vec3.xyz( 1, 0, 0), Vec3.xyz(-1, 0, 0), materialUVWallsR),
HalfSpace.pn(Vec3.xyz( 0, -1, 0), Vec3.xyz( 0, 1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 1, 0), Vec3.xyz( 0, -1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 0, 1), Vec3.xyz( 0, 0, -1), materialUVWalls),
Ball.cr(Vec3.xyz(-0.3, 0.3, 0.0), 0.4, uv -> Material.GLASS.refractive(Color.hsb(0.7, 0.2, 1.0))),
Ball.cr(Vec3.xyz( 0.4, -0.4, 0.0), 0.4, uv -> Material.GLASS),
Ball.cr(Vec3.xyz(-0.3, -0.4, -0.6), 0.4, uv -> Material.GLASS.refractiveIndex(2.5)),
Ball.cr(Vec3.xyz( 0.4, 0.3, 0.6), 0.4, uv -> Material.GLASS.refractiveIndex(0.6))
);
Collections.addAll(lights,
Light.pc(Vec3.xyz(-0.7, 0.7, -0.7), Color.WHITE),
Light.pc(Vec3.xyz(-0.7, 0.7, 0.7), Color.WHITE),
Light.pc(Vec3.xyz( 0.7, 0.7, -0.7), Color.WHITE),
Light.pc(Vec3.xyz( 0.7, 0.7, 0.7), Color.WHITE)
);
solid = Group.of(solids);
}
}
*/

View file

@ -1,4 +1,4 @@
/* package xyz.marsavic.gfxlab.graphics3d.scene;
package xyz.marsavic.gfxlab.graphics3d.scene;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Vec3;
@ -17,10 +17,10 @@ public class SceneTest1 extends Scene.Base{
public SceneTest1() {
solid = Group.of(
Ball.cr(Vec3.xyz(0, 0, 0), 1,
uv -> Material.matte(Color.hsb(uv.x() * 6, 0.8, uv.y()))
uv -> new Material(Color.hsb(uv.x() * 6, 0.8, uv.y()))
),
HalfSpace.pn(Vec3.xyz(0, -1, 0), Vec3.xyz(0, 1, 0),
uv -> Material.matte(Color.hsb(uv.x(), 0.8, 0.8))
uv -> new Material(Color.hsb(uv.x(), 0.8, 0.8))
)
);
@ -32,4 +32,3 @@ public class SceneTest1 extends Scene.Base{
}
}
*/

View file

@ -1,75 +0,0 @@
package xyz.marsavic.gfxlab.graphics3d.scene;
import xyz.marsavic.functions.interfaces.F1;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.SplineSpectrum;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.*;
import xyz.marsavic.gfxlab.graphics3d.solids.Ball;
import xyz.marsavic.gfxlab.graphics3d.solids.Group;
import xyz.marsavic.gfxlab.graphics3d.solids.HalfSpace;
import xyz.marsavic.gfxlab.graphics3d.solids.Parallelepiped;
import xyz.marsavic.gfxlab.graphics3d.textures.Grid;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
public class SpectrumTest extends Scene.Base {
public SpectrumTest() {
var materialUVWalls = (F1<Material, Vector>) (uv -> Material.matte(1.0));
var materialBlocks = (F1<Material, Vector>) (uv -> Material.matte(0.0));
var materialUVWallsL = Grid.standard(w -> 1.0);
var materialUVWallsB = Grid.standard(w -> 1.0);
var materialCoverBlock = Grid.standard(w -> 0.0);
var materialUVWallsR = Grid.standard(w -> 1.0);
var materialGlass = (F1<Material, Vector>) (uv -> Material.GLASS
.refractiveIndex(w -> 5.6 + (w-400)/(800-400) * (1.55 - 5.6)));
var materialMirror = (F1<Material, Vector>) (uv -> Material.MIRROR);
var materialLight = (F1<Material, Vector>) (uv -> Material.light(w -> 1.0));
Collection<Solid> solids = new ArrayList<>();
Collections.addAll(solids,
HalfSpace.pn(Vec3.xyz(-1, 0, 0), Vec3.xyz( 1, 0, 0), materialUVWallsL),
HalfSpace.pn(Vec3.xyz( 1, 0, 0), Vec3.xyz(-1, 0, 0), materialUVWallsR),
HalfSpace.pn(Vec3.xyz( 0, -1, 0), Vec3.xyz( 0, 1, 0), materialUVWalls),
// HalfSpace.pn(Vec3.xyz( 0, 1, 0), Vec3.xyz( 0, -1, 0), materialUVWalls),
HalfSpace.pn(Vec3.xyz( 0, 0, 1), Vec3.xyz( 0, 0, -1), materialUVWallsB),
HalfSpace.pn(Vec3.xyz( 0, 0, -6), Vec3.xyz( 0, 0, 1), materialUVWallsB),
Ball.cr(Vec3.xyz(0, 6, 0), 0.8, materialLight),
Parallelepiped.pabc(Vec3.xyz(-0.25, 0, 0.25),
Vec3.xyz(0.6, 0.8, 0),
Vec3.xyz(-0.2, -0.6, 0),
Vec3.xyz(0, 0, -0.5),
materialGlass),
Parallelepiped.pabc(Vec3.xyz(-1, 1, 1),
Vec3.xyz(0.75, 0, 0),
Vec3.xyz(0, 0.4, 0),
Vec3.xyz(0, 0, -6),
materialCoverBlock),
Parallelepiped.pabc(Vec3.xyz(0.25, 1, 1),
Vec3.xyz(2, 0, 0),
Vec3.xyz(0, 0.4, 0),
Vec3.xyz(0, 0, -6),
materialCoverBlock),
Parallelepiped.pabc(Vec3.xyz(-0.25, 1, 1),
Vec3.xyz(0.5, 0, 0),
Vec3.xyz(0, 0.4, 0),
Vec3.xyz(0, 0, -0.75),
materialCoverBlock),
Parallelepiped.pabc(Vec3.xyz(-0.25, 1, -0.25),
Vec3.xyz(0.5, 0, 0),
Vec3.xyz(0, 0.4, 0),
Vec3.xyz(0, 0, -6),
materialCoverBlock)
);
solid = Group.of(solids);
}
}

View file

@ -39,15 +39,4 @@ public class Group implements Solid {
return minHit;
}
@Override
public boolean hitBetween(Ray ray, double afterTime, double beforeTime) {
for (Solid s : solids) {
Hit hit = s.firstHit(ray, afterTime);
if ((hit != null) && (hit.t() < beforeTime)) {
return true;
}
}
return false;
}
}

View file

@ -1,108 +0,0 @@
package xyz.marsavic.gfxlab.graphics3d.solids;
import xyz.marsavic.functions.interfaces.F1;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Vec3;
import xyz.marsavic.gfxlab.graphics3d.Hit;
import xyz.marsavic.gfxlab.graphics3d.Material;
import xyz.marsavic.gfxlab.graphics3d.Ray;
import xyz.marsavic.gfxlab.graphics3d.Solid;
public class Parallelepiped implements Solid {
private final Vec3 p; // starting vertex
private final Vec3[][][] vertices;
HalfSpace [] sides;
private final Vec3 a, b, c;
private Parallelepiped(Vec3 point, Vec3 aEdge, Vec3 bEdge, Vec3 cEdge, F1<Material, Vector> mapMaterial) {
this.p = point;
this.a = aEdge;
this.b = bEdge;
this.c = cEdge;
vertices = new Vec3[][][]
{{{p, p.add(c)}, {p.add(b), p.add(b).add(c)}},
{{p.add(a), p.add(a).add(c)}, {p.add(a).add(b), p.add(a).add(b).add(c)}}};
sides = new HalfSpace[6];
sides[0] = HalfSpace.pef(p, b, a, mapMaterial);
sides[1] = HalfSpace.pef(p.add(c), a, b, mapMaterial);
sides[2] = HalfSpace.pef(p, a, c, mapMaterial);
sides[3] = HalfSpace.pef(p.add(b), c, a, mapMaterial);
sides[4] = HalfSpace.pef(p, c, b, mapMaterial);
sides[5] = HalfSpace.pef(p.add(a), b, c, mapMaterial);
}
public static Parallelepiped pabc(Vec3 p, Vec3 a, Vec3 b, Vec3 c, F1<Material, Vector> mapMaterial) {
return new Parallelepiped(p, a, b, c, mapMaterial);
}
public Vec3 p() {
return p;
}
public Vec3 a() {
return a;
}
public Vec3 b() {
return b;
}
public Vec3 c() {
return c;
}
public Vec3[][][] vertices() {
return vertices.clone();
}
private static boolean pointOnParallelogram(Vec3 p, Vec3 e, Vec3 f) {
// we solve p as a linear combination of a*e+b*f, then check if this combination is in
// 0<=a<=1 and 0<=b<=1
double D = e.lengthSquared() * f.lengthSquared() - e.dot(f)*e.dot(f);
if (D == 0)
return false;
// System determinant
double Da = p.dot(e)*f.lengthSquared() - p.dot(f)*e.dot(f);
// a's determinant
double Db = e.lengthSquared()*p.dot(f) - e.dot(f)*p.dot(e);
double a = Da/D;
// a's determinant
double b = Db/D;
// b's determinant
return a >= 0 && a <= 1 && b >= 0 && b <= 1;
}
@Override
public Hit firstHit(Ray ray, double afterTime) {
Hit[] planeHits = new Hit[6];
for (int i = 0; i < 6; i++) {
planeHits[i] = sides[i].firstHit(ray, afterTime);
if (planeHits[i] == null) {
continue;
}
Vec3 rayPlaneIntersect = ray.at(planeHits[i].t());
if (!pointOnParallelogram(rayPlaneIntersect.sub(sides[i].p()), sides[i].e(), sides[i].f())) {
planeHits[i] = null;
}
}
double minT = Hit.t(null); // Positive infinity
int minI = 0;
for (int i = 0; i < 6; i++) {
if (Hit.t(planeHits[i]) < minT) {
minT = Hit.t(planeHits[i]);
minI = i;
}
}
return planeHits[minI];
}
}

View file

@ -1,55 +0,0 @@
package xyz.marsavic.gfxlab.graphics3d.textures;
import xyz.marsavic.functions.interfaces.F1;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Spectrum;
import xyz.marsavic.gfxlab.graphics3d.Material;
public class Grid implements F1<Material, Vector> {
private final Vector size, sizeLine;
private final Material material, materialLine;
// transient
private final Vector sizeLineHalf;
public Grid(Vector size, Vector sizeLine, Material material, Material materialLine) {
this.size = size;
this.sizeLine = sizeLine;
this.material = material;
this.materialLine = materialLine;
sizeLineHalf = sizeLine.div(2);
}
@Override
public Material at(Vector uv) {
Vector p = uv.add(sizeLineHalf).mod(size);
return (p.x() < sizeLine.x()) || (p.y() < sizeLine.y()) ? materialLine : material;
}
public static Grid standard(Spectrum spectrum) {
return new Grid(
Vector.xy(0.25, 0.25),
Vector.xy(0.01, 0.01),
Material.matte(spectrum),
Material.matte(w -> spectrum.at(w) * 0.75)
);
}
public static Grid standardUnit(Spectrum spectrum) {
return new Grid(
Vector.UNIT_DIAGONAL,
Vector.xy(1.0/64),
Material.matte(spectrum),
Material.matte(w -> spectrum.at(w) * 0.75)
);
}
}

View file

@ -4,15 +4,11 @@ import xyz.marsavic.functions.interfaces.A2;
import xyz.marsavic.functions.interfaces.F1;
import xyz.marsavic.gfxlab.*;
import xyz.marsavic.gfxlab.elements.Output;
import xyz.marsavic.gfxlab.graphics3d.Affine;
import xyz.marsavic.gfxlab.graphics3d.cameras.Perspective;
import xyz.marsavic.gfxlab.graphics3d.cameras.TransformedCamera;
import xyz.marsavic.gfxlab.graphics3d.raytracers.RayTracerSimple;
import xyz.marsavic.gfxlab.graphics3d.scene.SpectrumTest;
import xyz.marsavic.gfxlab.gui.UtilsGL;
import xyz.marsavic.gfxlab.playground.colorfunctions.Planes;
import xyz.marsavic.gfxlab.tonemapping.ColorTransform;
import xyz.marsavic.gfxlab.tonemapping.ToneMapping;
import xyz.marsavic.gfxlab.tonemapping.matrixcolor_to_colortransforms.AutoSoft;
import xyz.marsavic.gfxlab.tonemapping.colortransforms.Multiply;
import static xyz.marsavic.gfxlab.elements.ElementF.e;
import static xyz.marsavic.gfxlab.elements.Output.val;
@ -31,34 +27,24 @@ public class GfxLab {
e(Fs::aFillFrameInt,
e(Fs::aFillFrameColor,
e(Fs::transformedColorFunction,
// e(Blobs::new, val(5), val(0.1), val(0.2)),
e(RayTracerSimple::new,
// e(RefractionTest::new),
// e(DiscoRoom::new, val(16), val(16), val(0x3361EB272FEA4C62L)),
e(SpectrumTest::new),
// e(Mirrors::new, val(3)),
e(TransformedCamera::new,
e(Perspective::new, val(1.0/3)),
// e(Orthographic::new),
e(Affine.IDENTITY
.then(Affine.translation(Vec3.xyz(0, 0, -4)))
)
)
e(Planes::new),
/* e(RayTracerSimple::new,
e(SceneTest1::new)
),
e(TransformationsFromSize.toGeometric, eSize)
*/ e(TransformationsFromSize.toGeometric, eSize)
)
),
e(Fs::toneMapping,
// e(ColorTransform::asColorTransformFromMatrixColor,
// e(Multiply::new, val(0.05))
// )
e(AutoSoft::new, e(0x1p-5), e(1.0))
e(ColorTransform::asColorTransformFromMatrixColor,
e(Multiply::new, val(1.0))
)
)
)
);
);
outRenderer = eRenderer.out();
}
}
@ -90,5 +76,4 @@ class Fs {
};
}
}

View file

@ -0,0 +1,16 @@
package xyz.marsavic.gfxlab.playground.colorfunctions;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.ColorFunctionT;
public class BoringGrid implements ColorFunctionT {
@Override
public Color at(double t, Vector p) {
double linew = 0.01;
double gridw = 0.2;
return Color.gray((p.x() - linew/2)/gridw <= Math.floor((p.x() + linew/2)/gridw) ||
(p.y() - linew/2)/gridw <= Math.floor((p.y() + linew/2)/gridw) ?
0.9 : 0.05);
}
}

View file

@ -0,0 +1,80 @@
package xyz.marsavic.gfxlab.playground.colorfunctions;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.ColorFunctionT;
import xyz.marsavic.gfxlab.elements.Element;
import xyz.marsavic.utils.Defaults;
import xyz.marsavic.utils.Numeric;
public class Planes extends Element implements ColorFunctionT {
double speed = 5;
private double distance(double t) {
return speed * t;
}
double ballSpace = 0.8;
FakeBall [] balls;
public static final Defaults<Planes> $ = Defaults.args();
private class FakeBall {
Color c = Color.rgb(Math.random(), Math.random(), Math.random());
double r = Math.random()/4+0.25;
double xOffset;
double maxHeight = Math.random()/2;
double minHeight = -Math.random()/2;
double phaseOffset = Math.random();
public FakeBall(int offset) {
this.xOffset = offset*ballSpace + Math.random()/5;
}
public double currentHeight(double t) {
return (Numeric.sinT(distance(t)+phaseOffset)+1)*(maxHeight-minHeight)/2+minHeight;
}
public Vector center(double t) {
return Vector.xy(xOffset+distance(t), currentHeight(t));
}
}
public Planes() {
int ballNum = 20;
balls = new FakeBall[ballNum];
for (int i = 0; i < ballNum; i++) {
balls[i] = new FakeBall(i-ballNum/2);
}
}
ColorFunctionT ceil = new Blobs(5, 3.5, 0.2), floor = new BoringGrid();
@Override
public Color at(double t, Vector p) {
for (FakeBall ball : balls) {
double distanceFromCenterSq = p.sub(ball.center(t)).length(),
rSqr = ball.r * ball.r;
if (distanceFromCenterSq < rSqr) {
return ball.c.mul((rSqr - distanceFromCenterSq) / rSqr);
}
}
double infinity = 0.15;
if (p.y() > infinity) {
return ceil.at(t, Vector.xy(p.x()/(p.y()-infinity)-distance(t),
(1-p.y())/(p.y()-infinity)));
}
if (p.y() < -infinity) {
return floor.at(t, Vector.xy(p.x()/(-infinity-p.y())-distance(t),
(p.y()-(-1))/(-infinity-p.y())));
}
return Color.BLACK;
}
}

View file

@ -1,71 +0,0 @@
package xyz.marsavic.gfxlab.tonemapping.matrixcolor_to_colortransforms;
import xyz.marsavic.functions.interfaces.F1;
import xyz.marsavic.geometry.Vector;
import xyz.marsavic.gfxlab.Color;
import xyz.marsavic.gfxlab.Matrix;
import xyz.marsavic.gfxlab.gui.UtilsGL;
import xyz.marsavic.gfxlab.tonemapping.ColorTransform;
// TODO
public class AutoSoft implements F1<ColorTransform, Matrix<Color>> {
private final double preFactor;
private final double power;
private final double postFactor = 1.0;
private final boolean autoPostFactor = true;
public AutoSoft(double preFactor, double power) {
this.preFactor = preFactor;
this.power = power;
}
private double lFactor(double lSrc) {
double lPre = lSrc * preFactor;
double lDst = 1 - 1 / (1 + Math.pow(lPre, power));
double f = lDst / lSrc;
if (Double.isNaN(f)) {
f = 0;
}
return f;
}
@Override
public ColorTransform at(Matrix<Color> colorMatrix) {
Vector size = colorMatrix.size();
double postFactor_;
if (autoPostFactor) {
double[] maxY = new double[size.xInt()];
UtilsGL.parallelY(size, y -> {
maxY[y] = Double.NEGATIVE_INFINITY;
for (int x = 0; x < size.xInt(); x++) {
Color c = colorMatrix.get(x, y);
Color result = c.mul(lFactor(c.luminance()));
maxY[y] = Math.max(maxY[y], result.max());
}
});
// TODO Replace with fork-join task.
double max = Double.NEGATIVE_INFINITY;
for (int y = 0; y < size.yInt(); y++) {
max = Math.max(max, maxY[y]);
}
postFactor_ = 1 / max;
} else {
postFactor_ = postFactor;
}
return color -> color.mul(lFactor(color.luminance()) * postFactor_);
}
}