#lang sicp ; a) Define unique-pairs (define (accumulate op initial sequence) (if (null? sequence) initial (op (car sequence) (accumulate op initial (cdr sequence))))) (define (flatmap proc seq) (accumulate append nil (map proc seq))) (define (enumerate-interval a b) (if (> a b) '() (cons a (enumerate-interval (+ a 1) b)))) (define (unique-pairs n) (flatmap (lambda (i) (map (lambda (j) (list i j)) (enumerate-interval 1 (- i 1)))) (enumerate-interval 1 n))) ; b) use it to define prime-sum-pairs (define (filter predicate sequence) (cond ((null? sequence) nil) ((predicate (car sequence)) (cons (car sequence) (filter predicate (cdr sequence)))) (else (filter predicate (cdr sequence))))) (define (square x) (* x x)) (define (smallest-divisor n) (find-divisor n 2)) (define (find-divisor n test-divisor) (cond ((> (square test-divisor) n) n) ((divides? test-divisor n) test-divisor) (else (find-divisor n (+ test-divisor 1))))) (define (divides? a b) (= (remainder b a) 0)) (define (prime? n) (= n (smallest-divisor n))) (define (prime-sum? pair) (prime? (+ (car pair) (cadr pair)))) (define (prime-sum-pairs n) (map (lambda (pair) (list (car pair) (cadr pair) (+ (car pair) (cadr pair)))) (filter prime-sum? (unique-pairs n))))