#lang sicp ; Building on top of exercise 2.79 ;;; ;;; ;;; Setup for the exercise ;;; ;;; (define (square x) (* x x)) ; Dispatch table: list of rows, structure below: ; one row: (op-tag . (... one cell) (...) (...)) ; one cell: ((list of type tags) . procedure) ; essentially, the whole table is an alist of alists ; (list of type tags) is a list of length n for n-ary op ; a unary op can be called with a symbol instead of a list of symbols for a type ; tag, but this will be converted to a length-1 list while searching the table (define *dispatch-table* '()) ;;; ;;; Dispatch table ;;; ; finds member in alist based on tag, which is the car of the row (define (search-in-list tag list) (if (null? list) nil (let* ((current-member (car list)) (member-tag (car current-member))) (if (equal? member-tag tag) current-member ; we don't strip the key when returning (search-in-list tag (cdr list)))))) (define (get op-tag init-type-tags) (let* ((type-tags (if (symbol? init-type-tags) (list init-type-tags) init-type-tags)) ; wrap type-tags in a list if it's supplied as a symbol (row-1 (search-in-list op-tag *dispatch-table*)) (row (if (null? row-1) nil (cdr row-1))) ; we strip the name of the row (procedure-1 (search-in-list type-tags row)) (procedure (if (null? procedure-1) nil (cdr procedure-1)))) (if (null? procedure) (error "Procedure not found in dispatch table:" op-tag type-tags) procedure))) (define (add-pair! alist tag value) (set! alist (cons (cons tag value) alist))) (define (put op-tag init-type-tags procedure) (let* ((type-tags (if (symbol? init-type-tags) (list init-type-tags) init-type-tags)) (search-row (search-in-list op-tag *dispatch-table*)) ; here we don't strip the key from search-in-list (row (if (null? search-row) (begin (set! *dispatch-table* (cons (cons op-tag nil) *dispatch-table*)) (car *dispatch-table*)) search-row)) (search-cell (search-in-list type-tags (cdr row)))) (if (null? search-cell) (set-cdr! row (cons (cons type-tags procedure) (cdr row))) ; attaching new pair to row (set-cdr! search-cell procedure)))) ;;; ;;; Auxillary functions for type tags ;;; ; The actual exercise 2.78 (define (attach-tag type-tag contents) (if (eq? type-tag 'scheme-number) contents (cons type-tag contents))) (define (type-tag datum) (cond ((pair? datum) (car datum)) ((number? datum) 'scheme-number) (error "Bad tagged datum: TYPE-TAG" datum))) (define (contents datum) (cond ((pair? datum) (cdr datum)) ((number? datum) datum) (error "Bad tagged datum: CONTENTS" datum))) ;;; ;;; Complex packages ;;; (define (install-rectangular-package) ;; internal procedures (define (real-part z) (car z)) (define (imag-part z) (cdr z)) (define (make-from-real-imag x y) (cons x y)) (define (magnitude z) (sqrt (+ (square (real-part z)) (square (imag-part z))))) (define (angle z) (atan (imag-part z) (real-part z))) (define (make-from-mag-ang r a) (cons (* r (cos a)) (* r (sin a)))) ;; interface to the rest of the system (define (tag x) (attach-tag 'rectangular x)) (put 'real-part '(rectangular) real-part) (put 'imag-part '(rectangular) imag-part) (put 'magnitude '(rectangular) magnitude) (put 'angle '(rectangular) angle) (put 'make-from-real-imag 'rectangular (lambda (x y) (tag (make-from-real-imag x y)))) (put 'make-from-mag-ang 'rectangular (lambda (r a) (tag (make-from-mag-ang r a)))) 'done) (define (install-polar-package) ;; internal procedures (define (magnitude z) (car z)) (define (angle z) (cdr z)) (define (make-from-mag-ang r a) (cons r a)) (define (real-part z) (* (magnitude z) (cos (angle z)))) (define (imag-part z) (* (magnitude z) (sin (angle z)))) (define (make-from-real-imag x y) (cons (sqrt (+ (square x) (square y))) (atan y x))) ;; interface to the rest of the system (define (tag x) (attach-tag 'polar x)) (put 'real-part '(polar) real-part) (put 'imag-part '(polar) imag-part) (put 'magnitude '(polar) magnitude) (put 'angle '(polar) angle) (put 'make-from-real-imag 'polar (lambda (x y) (tag (make-from-real-imag x y)))) (put 'make-from-mag-ang 'polar (lambda (r a) (tag (make-from-mag-ang r a)))) 'done) (install-rectangular-package) (install-polar-package) ;;; ;;; Apply generic and complex function definitions ;;; (define (apply-generic op . args) (let ((type-tags (map type-tag args))) (let ((proc (get op type-tags))) (if proc (apply proc (map contents args)) (error "No method for these types: APPLY-GENERIC" (list op type-tags)))))) (define (real-part z) (apply-generic 'real-part z)) (define (imag-part z) (apply-generic 'imag-part z)) (define (magnitude z) (apply-generic 'magnitude z)) (define (angle z) (apply-generic 'angle z)) (define (make-from-real-imag x y) ((get 'make-from-real-imag 'rectangular) x y)) (define (make-from-mag-ang r a) ((get 'make-from-mag-ang 'polar) r a)) ;;; ;;; Generic function definition ;;; (define (add x y) (apply-generic 'add x y)) (define (sub x y) (apply-generic 'sub x y)) (define (mul x y) (apply-generic 'mul x y)) (define (div x y) (apply-generic 'div x y)) ;;; ;;; Scheme number package ;;; (define (install-scheme-number-package) (define (tag x) (attach-tag 'scheme-number x)) (put 'add '(scheme-number scheme-number) (lambda (x y) (tag (+ x y)))) (put 'sub '(scheme-number scheme-number) (lambda (x y) (tag (- x y)))) (put 'mul '(scheme-number scheme-number) (lambda (x y) (tag (* x y)))) (put 'div '(scheme-number scheme-number) (lambda (x y) (tag (/ x y)))) (put 'make 'scheme-number (lambda (x) (tag x))) ; part of exercise 2.79 (put 'equ? '(scheme-number scheme-number) =) ; part of exercise 2.80 (put '=zero? '(scheme-number) (lambda (x) (zero? x))) 'done) (install-scheme-number-package) (define (make-scheme-number n) ((get 'make 'scheme-number) n)) ;;; ;;; Rational number package ;;; (define (install-rational-package) ;; internal procedures (define (numer x) (car x)) (define (denom x) (cdr x)) ; Modified to make exercise 2.79 easier to implement (define (make-rat n d) (let ((g (gcd n d)) (sign-flip (if (< d 0) -1 1))) (cons (/ n g sign-flip) (/ d g sign-flip)))) (define (add-rat x y) (make-rat (+ (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (sub-rat x y) (make-rat (- (* (numer x) (denom y)) (* (numer y) (denom x))) (* (denom x) (denom y)))) (define (mul-rat x y) (make-rat (* (numer x) (numer y)) (* (denom x) (denom y)))) (define (div-rat x y) (make-rat (* (numer x) (denom y)) (* (denom x) (numer y)))) ;; interface to rest of the system (define (tag x) (attach-tag 'rational x)) (put 'add '(rational rational) (lambda (x y) (tag (add-rat x y)))) (put 'sub '(rational rational) (lambda (x y) (tag (sub-rat x y)))) (put 'mul '(rational rational) (lambda (x y) (tag (mul-rat x y)))) (put 'div '(rational rational) (lambda (x y) (tag (div-rat x y)))) (put 'make 'rational (lambda (n d) (tag (make-rat n d)))) ; part of exercise 2.79 (put 'equ? '(rational rational) (lambda (x y) (and (= (numer x) (numer y)) (= (denom x) (denom y))))) ; part of exercise 2.80 (put '=zero? '(rational) (lambda (x) (= (numer x) 0))) 'done) (install-rational-package) (define (make-rational n d) ((get 'make 'rational) n d)) ;;; ;;; Complex number package ;;; (define (install-complex-package) ;; imported procedures from rectangular and polar packages (define (make-from-real-imag x y) ((get 'make-from-real-imag 'rectangular) x y)) (define (make-from-mag-ang r a) ((get 'make-from-mag-ang 'polar) r a)) ;; internal procedures (define (add-complex z1 z2) (make-from-real-imag (+ (real-part z1) (real-part z2)) (+ (imag-part z1) (imag-part z2)))) (define (sub-complex z1 z2) (make-from-real-imag (- (real-part z1) (real-part z2)) (- (imag-part z1) (imag-part z2)))) (define (mul-complex z1 z2) (make-from-mag-ang (* (magnitude z1) (magnitude z2)) (+ (angle z1) (angle z2)))) (define (div-complex z1 z2) (make-from-mag-ang (/ (magnitude z1) (magnitude z2)) (- (angle z1) (angle z2)))) ;; interface to rest of the system (define (tag z) (attach-tag 'complex z)) (put 'add '(complex complex) (lambda (z1 z2) (tag (add-complex z1 z2)))) (put 'sub '(complex complex) (lambda (z1 z2) (tag (sub-complex z1 z2)))) (put 'mul '(complex complex) (lambda (z1 z2) (tag (mul-complex z1 z2)))) (put 'div '(complex complex) (lambda (z1 z2) (tag (div-complex z1 z2)))) (put 'make-from-real-imag 'complex (lambda (x y) (tag (make-from-real-imag x y)))) (put 'make-from-mag-ang 'complex (lambda (r a) (tag (make-from-mag-ang r a)))) ; Code added as fix in the exercise 2.77 (put 'real-part '(complex) real-part) (put 'imag-part '(complex) imag-part) (put 'magnitude '(complex) magnitude) (put 'angle '(complex) angle) ; Code added as fix in the exercise ; part of exercise 2.79 (put 'equ? '(complex complex) (lambda (z1 z2) (and (= (real-part z1) (real-part z2)) (= (imag-part z1) (imag-part z2))))) ; part of exercise 2.80 (put '=zero? '(complex) (lambda (z) (= (magnitude z) 0))) 'done) (install-complex-package) (define (make-complex-from-real-imag x y) ((get 'make-from-real-imag 'complex) x y)) (define (make-complex-from-mag-ang r a) ((get 'make-from-mag-ang 'complex) r a)) ;;; ;;; ;;; The actual exercise is dispersed through the packages, but clearly marked ;;; ;;; ; I believe that in this exercise, we are only expected to define equ? to ; compare numbers of the same type, not on different types, since this matter ; is more fully addressed in the following subsection of the book. (define (equ? x y) (apply-generic 'equ? x y)) (define (=zero? x) (apply-generic '=zero? x))