#lang sicp (define (square x) (* x x)) (define (expmod base exp m) (cond ((= exp 0) 1) ((even? exp) (remainder (square (expmod base (/ exp 2) m)) m)) (else (remainder (* base (expmod base (- exp 1) m)) m)))) (define (smallest-divisor n) (find-divisor n 2)) (define (find-divisor n test-divisor) (cond ((> (square test-divisor) n) n) ((divides? test-divisor n) test-divisor) (else (find-divisor n (+ test-divisor 1))))) (define (divides? a b) (= (remainder b a) 0)) (define (fermat-test n) (define (try-it a) (= (expmod a n n) a)) (try-it (+ 1 (random (- n 1))))) (define (fast-prime? n times) (cond ((= times 0) true) ((fermat-test n) (fast-prime? n (- times 1))) (else false))) (define (prime? n) (= n (smallest-divisor n))) (define (timed-prime-test n) (newline) (display n) (start-prime-test n (runtime))) (define (start-prime-test n start-time) (if (fast-prime? n 10) (report-prime (- (runtime) start-time)))) (define (report-prime elapsed-time) (display " *** ") (display elapsed-time)) (define (search-for-primes a b) (cond ((> a b) '()) ((not (even? a)) (timed-prime-test a) (search-for-primes (+ a 2) b)) (else (search-for-primes (+ a 1) b))))