sicp-solutions/chapter-2/ex-2.40.scm

55 lines
1.4 KiB
Scheme

#lang sicp
; a) Define unique-pairs
(define (accumulate op initial sequence)
(if (null? sequence)
initial
(op (car sequence)
(accumulate op initial (cdr sequence)))))
(define (flatmap proc seq)
(accumulate append nil (map proc seq)))
(define (enumerate-interval a b)
(if (> a b)
'()
(cons a (enumerate-interval (+ a 1) b))))
(define (unique-pairs n)
(flatmap (lambda (i)
(map (lambda (j) (list i j))
(enumerate-interval 1 (- i 1))))
(enumerate-interval 1 n)))
; b) use it to define prime-sum-pairs
(define (filter predicate sequence)
(cond ((null? sequence) nil)
((predicate (car sequence))
(cons (car sequence)
(filter predicate (cdr sequence))))
(else (filter predicate (cdr sequence)))))
(define (square x) (* x x))
(define (smallest-divisor n)
(find-divisor n 2))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)
(= (remainder b a) 0))
(define (prime? n)
(= n (smallest-divisor n)))
(define (prime-sum? pair)
(prime? (+ (car pair) (cadr pair))))
(define (prime-sum-pairs n)
(map (lambda (pair)
(list (car pair) (cadr pair) (+ (car pair)
(cadr pair))))
(filter prime-sum?
(unique-pairs n))))