sicp-solutions/chapter-2/ex-2.77.scm

317 lines
No EOL
11 KiB
Scheme

#lang sicp
;;;
;;;
;;; Setup for the exercise
;;;
;;;
(define (square x) (* x x))
; Dispatch table: list of rows, structure below:
; one row: (op-tag . (... one cell) (...) (...))
; one cell: ((list of type tags) . procedure)
; essentially, the whole table is an alist of alists
; (list of type tags) is a list of length n for n-ary op
; a unary op can be called with a symbol instead of a list of symbols for a type
; tag, but this will be converted to a length-1 list while searching the table
(define *dispatch-table* '())
;;;
;;; Dispatch table
;;;
; finds member in alist based on tag, which is the car of the row
(define (search-in-list tag list)
(if (null? list)
nil
(let* ((current-member (car list))
(member-tag (car current-member)))
(if (equal? member-tag tag)
current-member ; we don't strip the key when returning
(search-in-list tag (cdr list))))))
(define (get op-tag init-type-tags)
(let* ((type-tags (if (symbol? init-type-tags)
(list init-type-tags)
init-type-tags))
; wrap type-tags in a list if it's supplied as a symbol
(row-1 (search-in-list op-tag *dispatch-table*))
(row (if (null? row-1) nil (cdr row-1))) ; we strip the name of the row
(procedure-1 (search-in-list type-tags row))
(procedure (if (null? procedure-1) nil (cdr procedure-1))))
(if (null? procedure)
(error "Procedure not found in dispatch table:" op-tag type-tags)
procedure)))
(define (add-pair! alist tag value)
(set! alist (cons (cons tag value)
alist)))
(define (put op-tag init-type-tags procedure)
(let* ((type-tags (if (symbol? init-type-tags)
(list init-type-tags)
init-type-tags))
(search-row (search-in-list op-tag *dispatch-table*))
; here we don't strip the key from search-in-list
(row (if (null? search-row)
(begin (set! *dispatch-table* (cons (cons op-tag nil)
*dispatch-table*))
(car *dispatch-table*))
search-row))
(search-cell (search-in-list type-tags (cdr row))))
(if (null? search-cell)
(set-cdr! row (cons (cons type-tags procedure)
(cdr row)))
; attaching new pair to row
(set-cdr! search-cell procedure))))
;;;
;;; Auxillary functions for type tags
;;;
(define (attach-tag type-tag contents)
(cons type-tag contents))
(define (type-tag datum)
(if (pair? datum)
(car datum)
(error "Bad tagged datum: TYPE-TAG" datum)))
(define (contents datum)
(if (pair? datum)
(cdr datum)
(error "Bad tagged datum: CONTENTS" datum)))
;;;
;;; Complex packages
;;;
(define (install-rectangular-package)
;; internal procedures
(define (real-part z) (car z))
(define (imag-part z) (cdr z))
(define (make-from-real-imag x y) (cons x y))
(define (magnitude z)
(sqrt (+ (square (real-part z))
(square (imag-part z)))))
(define (angle z)
(atan (imag-part z) (real-part z)))
(define (make-from-mag-ang r a)
(cons (* r (cos a)) (* r (sin a))))
;; interface to the rest of the system
(define (tag x) (attach-tag 'rectangular x))
(put 'real-part '(rectangular) real-part)
(put 'imag-part '(rectangular) imag-part)
(put 'magnitude '(rectangular) magnitude)
(put 'angle '(rectangular) angle)
(put 'make-from-real-imag 'rectangular
(lambda (x y) (tag (make-from-real-imag x y))))
(put 'make-from-mag-ang 'rectangular
(lambda (r a) (tag (make-from-mag-ang r a))))
'done)
(define (install-polar-package)
;; internal procedures
(define (magnitude z) (car z))
(define (angle z) (cdr z))
(define (make-from-mag-ang r a) (cons r a))
(define (real-part z) (* (magnitude z) (cos (angle z))))
(define (imag-part z) (* (magnitude z) (sin (angle z))))
(define (make-from-real-imag x y)
(cons (sqrt (+ (square x) (square y)))
(atan y x)))
;; interface to the rest of the system
(define (tag x) (attach-tag 'polar x))
(put 'real-part '(polar) real-part)
(put 'imag-part '(polar) imag-part)
(put 'magnitude '(polar) magnitude)
(put 'angle '(polar) angle)
(put 'make-from-real-imag 'polar
(lambda (x y) (tag (make-from-real-imag x y))))
(put 'make-from-mag-ang 'polar
(lambda (r a) (tag (make-from-mag-ang r a))))
'done)
(install-rectangular-package)
(install-polar-package)
;;;
;;; Apply generic and complex function definitions
;;;
(define (apply-generic op . args)
(let ((type-tags (map type-tag args)))
(let ((proc (get op type-tags)))
(if proc
(apply proc (map contents args))
(error "No method for these types: APPLY-GENERIC"
(list op type-tags))))))
(define (real-part z) (apply-generic 'real-part z))
(define (imag-part z) (apply-generic 'imag-part z))
(define (magnitude z) (apply-generic 'magnitude z))
(define (angle z) (apply-generic 'angle z))
(define (make-from-real-imag x y)
((get 'make-from-real-imag 'rectangular) x y))
(define (make-from-mag-ang r a)
((get 'make-from-mag-ang 'polar) r a))
;;;
;;; Generic function definition
;;;
(define (add x y) (apply-generic 'add x y))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
;;;
;;; Scheme number package
;;;
(define (install-scheme-number-package)
(define (tag x) (attach-tag 'scheme-number x))
(put 'add '(scheme-number scheme-number)
(lambda (x y) (tag (+ x y))))
(put 'sub '(scheme-number scheme-number)
(lambda (x y) (tag (- x y))))
(put 'mul '(scheme-number scheme-number)
(lambda (x y) (tag (* x y))))
(put 'div '(scheme-number scheme-number)
(lambda (x y) (tag (/ x y))))
(put 'make 'scheme-number (lambda (x) (tag x)))
'done)
(install-scheme-number-package)
(define (make-scheme-number n)
((get 'make 'scheme-number) n))
;;;
;;; Rational number package
;;;
(define (install-rational-package)
;; internal procedures
(define (numer x) (car x))
(define (denom x) (cdr x))
(define (make-rat n d)
(let ((g (gcd n d)))
(cons (/ n g) (/ d g))))
(define (add-rat x y)
(make-rat (+ (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (sub-rat x y)
(make-rat (- (* (numer x) (denom y))
(* (numer y) (denom x)))
(* (denom x) (denom y))))
(define (mul-rat x y)
(make-rat (* (numer x) (numer y))
(* (denom x) (denom y))))
(define (div-rat x y)
(make-rat (* (numer x) (denom y))
(* (denom x) (numer y))))
;; interface to rest of the system
(define (tag x) (attach-tag 'rational x))
(put 'add '(rational rational)
(lambda (x y) (tag (add-rat x y))))
(put 'sub '(rational rational)
(lambda (x y) (tag (sub-rat x y))))
(put 'mul '(rational rational)
(lambda (x y) (tag (mul-rat x y))))
(put 'div '(rational rational)
(lambda (x y) (tag (div-rat x y))))
(put 'make 'rational
(lambda (n d) (tag (make-rat n d))))
'done)
(install-rational-package)
(define (make-rational n d)
((get 'make 'rational) n d))
;;;
;;; Complex number package
;;;
(define (install-complex-package)
;; imported procedures from rectangular and polar packages
(define (make-from-real-imag x y)
((get 'make-from-real-imag 'rectangular) x y))
(define (make-from-mag-ang r a)
((get 'make-from-mag-ang 'polar) r a))
;; internal procedures
(define (add-complex z1 z2)
(make-from-real-imag (+ (real-part z1) (real-part z2))
(+ (imag-part z1) (imag-part z2))))
(define (sub-complex z1 z2)
(make-from-real-imag (- (real-part z1) (real-part z2))
(- (imag-part z1) (imag-part z2))))
(define (mul-complex z1 z2)
(make-from-mag-ang (* (magnitude z1) (magnitude z2))
(+ (angle z1) (angle z2))))
(define (div-complex z1 z2)
(make-from-mag-ang (/ (magnitude z1) (magnitude z2))
(- (angle z1) (angle z2))))
;; interface to rest of the system
(define (tag z) (attach-tag 'complex z))
(put 'add '(complex complex)
(lambda (z1 z2) (tag (add-complex z1 z2))))
(put 'sub '(complex complex)
(lambda (z1 z2) (tag (sub-complex z1 z2))))
(put 'mul '(complex complex)
(lambda (z1 z2) (tag (mul-complex z1 z2))))
(put 'div '(complex complex)
(lambda (z1 z2) (tag (div-complex z1 z2))))
(put 'make-from-real-imag 'complex
(lambda (x y) (tag (make-from-real-imag x y))))
(put 'make-from-mag-ang 'complex
(lambda (r a) (tag (make-from-mag-ang r a))))
; Code added as fix in the exercise 2.77
(put 'real-part '(complex) real-part)
(put 'imag-part '(complex) imag-part)
(put 'magnitude '(complex) magnitude)
(put 'angle '(complex) angle)
; Code added as fix in the exercise
'done)
(install-complex-package)
(define (make-complex-from-real-imag x y)
((get 'make-from-real-imag 'complex) x y))
(define (make-complex-from-mag-ang r a)
((get 'make-from-mag-ang 'complex) r a))
;;;
;;;
;;; The actual exercise
;;;
;;;
; The explanation:
; When magnitude is invoked on the object '(complex rectangular 3 . 4), the call
; sequence will look roughly like so (represented in the substitution model:
; (magnitude '(complex rectangular 3 . 4))
; (apply-generic 'magnitude '(complex rectangular 3 . 4))
; (let ((type-tags (map type-tag args))) <- this will be '(complex)
; (let ((proc (get op type-tags))) <- this will return the exact same
; magnitude procedure again
; (if #<proc:magnitude> <- this will not be #f
; (apply #<proc:magnitude> (map contents '((complex rectangular 3 . 4))))
; (error "No method for these types: APPLY-GENERIC"
; (list op type-tags))))))
; (apply #<procedure:magnitude> (map contents '((complex rectangular 3 . 4))))
; (apply #<procedure:magnitude> '((rectangular 3 . 4)))
; (#<procedure:magnitude> '(rectangular 3 . 4))
; (apply-generic 'magnitude '(rectangular 3 . 4)) <- apply-generic expands again
; but we'll skip that
; (#<proc:magnitude-from-rectangular package> '(3 . 4))
; (sqrt (+ (square (real-part '(3 . 4)))
; (square (imag-part '(3 . 4)))))
; (sqrt (+ (square 3) (square 4)))
; 5
; In other words, the magnitude procedure, which calls apply-generic, will strip
; the outer tag 'complex, and then pass the stripped object back to itself
; (magnitude), which will, again, call apply-generic, which will then strip the
; second tag 'rectangular, and finally pass the object to magnitude and
; sub-procedures in the rectangular package. So apply-generic gets called twice.